Chapter V. The Agricultural Revolution
The Census of 1920 shows that hardly thirty per cent of the people are today engaged in agriculture, the basic industry of the United States, as compared with perhaps ninety per cent when the nation began. Yet American farmers, though constantly diminishing in proportion to the whole population, have always been, and still are, able to feed themselves and all their fellow Americans and a large part of the outside world as well. They bring forth also not merely foodstuffs, but vast quantities of raw material for manufacture, such as cotton, wool, and hides. This immense productivity is due to the use of farm machinery on a scale seen nowhere else in the world. There is still, and always will be, a good deal of hard labor on the farm. But invention has reduced the labor and has made possible the carrying on of this vast industry by a relatively small number of hands.
The farmers of Washington’s day had no better tools than had the farmers of Julius Caesar’s day; in fact, the Roman ploughs were probably superior to those in general use in America eighteen centuries later. "The machinery of production," says Henry Adams, "showed no radical difference from that familiar in ages long past. The Saxon farmer of the eighth century enjoyed most of the comforts known to Saxon farmers of the eighteenth."* One type of plough in the United States was little more than a crooked stick with an iron point attached, sometimes with rawhide, which simply scratched the ground. Ploughs of this sort were in use in Illinois as late as 1812. There were a few ploughs designed to turn a furrow, often simply heavy chunks of tough wood, rudely hewn into shape, with a wrought-iron point clumsily attached. The moldboard was rough and the curves of no two were alike. Country blacksmiths made ploughs only on order and few had patterns. Such ploughs could turn a furrow in soft ground if the oxen were strong enough—but the friction was so great that three men and four or six oxen were required to turn a furrow where the sod was tough.
* "History of the United States", vol. I, p. 16.
Thomas Jefferson had worked out very elaborately the proper curves of the moldboard, and several models had been constructed for him. He was, however, interested in too many things ever to follow any one to the end, and his work seems to have had little publicity. The first real inventor of a practicable plough was Charles Newbold, of Burlington County, New Jersey, to whom a patent for a cast-iron plough was issued in June, 1797. But the farmers would have none of it. They said it "poisoned the soil" and fostered the growth of weeds. One David Peacock received a patent in 1807, and two others later. Newbold sued Peacock for infringement and recovered damages. Pieces of Newbold’s original plough are in the museum of the New York Agricultural Society at Albany.
Another inventor of ploughs was Jethro Wood, a blacksmith of Scipio, New York, who received two patents, one in 1814 and the other in 1819. His plough was of cast iron, but in three parts, so that a broken part might be renewed without purchasing an entire plough. This principle of standardization marked a great advance. The farmers by this time were forgetting their former prejudices, and many ploughs were sold. Though Wood’s original patent was extended, infringements were frequent, and he is said to have spent his entire property in prosecuting them.
In clay soils these ploughs did not work well, as the more tenacious soil stuck to the iron moldboard instead of curling gracefully away. In 1833, John Lane, a Chicago blacksmith, faced a wooden moldboard with an old steel saw. It worked like magic, and other blacksmiths followed suit to such an extent that the demand for old saws became brisk. Then came John Deere, a native of Vermont, who settled first in Grand Detour, and then in Moline, Illinois. Deere made wooden ploughs faced with steel, like other blacksmiths, but was not satisfied with them and studied and experimented to find the best curves and angles for a plough to be used in the soils around him. His ploughs were much in demand, and his need for steel led him to have larger and larger quantities produced for him, and the establishment which still bears his name grew to large proportions.
Another skilled blacksmith, William Parlin, at Canton, Illinois, began making ploughs about 1842, which he loaded upon a wagon and peddled through the country. Later his establishment grew large. Another John Lane, a son of the first, patented in 1868 a "soft-center" steel plough. The hard but brittle surface was backed by softer and more tenacious metal, to reduce the breakage. The same year James Oliver, a Scotch immigrant who had settled at South Bend, Indiana, received a patent for the "chilled plough." By an ingenious method the wearing surfaces of the casting were cooled more quickly than the back. The surfaces which came in contact with the soil had a hard, glassy surface, while the body of the plough was of tough iron. From small beginnings Oliver’s establishment grew great, and the Oliver Chilled Plow Works at South Bend is today one of the largest and most favorably known privately owned industries in the United States.
From the single plough it was only a step to two or more ploughs fastened together, doing more work with approximately the same man power. The sulky plough, on which the ploughman rode, made his work easier, and gave him great control. Such ploughs were certainly in use as early as 1844, perhaps earlier. The next step forward was to substitute for horses a traction engine. Today one may see on thousands of farms a tractor pulling six, eight, ten, or more ploughs, doing the work better than it could be done by an individual ploughman. On the "Bonanza" farms of the West a fifty horsepower engine draws sixteen ploughs, followed by harrows and a grain drill, and performs the three operations of ploughing, harrowing, and planting at the same time and covers fifty acres or more in a day.
The basic ideas in drills for small grains were successfully developed in Great Britain, and many British drills were sold in the United States before one was manufactured here. American manufacture of these drills began about 1840. Planters for corn came somewhat later. Machines to plant wheat successfully were unsuited to corn, which must be planted less profusely than wheat.
The American pioneers had only a sickle or a scythe with which to cut their grain. The addition to the scythe of wooden fingers, against which the grain might lie until the end of the swing, was a natural step, and seems to have been taken quite independently in several places, perhaps as early as 1803. Grain cradles are still used in hilly regions and in those parts of the country where little grain is grown.
The first attempts to build a machine to cut grain were made in England and Scotland, several of them in the eighteenth century; and in 1822 Henry Ogle, a schoolmaster in Rennington, made a mechanical reaper, but the opposition of the laborers of the vicinity, who feared loss of employment, prevented further development. In 1826, Patrick Bell, a young Scotch student, afterward a Presbyterian minister, who had been moved by the fatigue of the harvesters upon his father’s farm in Argyllshire, made an attempt to lighten their labor. His reaper was pushed by horses; a reel brought the grain against blades which opened and closed like scissors, and a traveling canvas apron deposited the grain at one side. The inventor received a prize from the Highland and Agricultural Society of Edinburgh, and pictures and full descriptions of his invention were published. Several models of this reaper were built in Great Britain, and it is said that four came to the United States; however this may be, Bell’s machine was never generally adopted.
Soon afterward three men patented reapers in the United States: William Manning, Plainfield, New Jersey, 1831; Obed Hussey, Cincinnati, Ohio, 1833; and Cyrus Hall McCormick, Staunton, Virginia, 1834. Just how much they owed to Patrick Bell cannot be known, but it is probable that all had heard of his design if they had not seen his drawings or the machine itself. The first of these inventors, Manning of New Jersey, drops out of the story, for it is not known whether he ever made a machine other than his model. More persistent was Obed Hussey of Cincinnati, who soon moved to Baltimore to fight out the issue with McCormick. Hussey was an excellent mechanic. He patented several improvements to his machine and received high praise for the efficiency of the work. But he was soon outstripped in the race because he was weak in the essential qualities which made McCormick the greatest figure in the world of agricultural machinery. McCormick was more than a mechanic; he was a man of vision; and he had the enthusiasm of a crusader and superb genius for business organization and advertisement. His story has been told in another volume of this series.*
* "The Age of Big Business", by Burton J. Hendrick.
Though McCormick offered reapers for sale in 1834, he seems to have sold none in that year, nor any for six years afterwards. He sold two in 1840, seven in 1842, fifty in 1844. The machine was not really adapted to the hills of the Valley of Virginia, and farmers hesitated to buy a contrivance which needed the attention of a skilled mechanic. McCormick made a trip through the Middle West. In the rolling prairies, mile after mile of rich soil without a tree or a stone, he saw his future dominion. Hussey had moved East. McCormick did the opposite; he moved West, to Chicago, in 1847.
Chicago was then a town of hardly ten thousand, but McCormick foresaw its future, built a factory there, and manufactured five hundred machines for the harvest of 1848. From this time he went on from triumph to triumph. He formulated an elaborate business system. His machines were to be sold at a fixed price, payable in installments if desired, with a guarantee of satisfaction. He set up a system of agencies to give instruction or to supply spare parts. Advertising, chiefly by exhibitions and contests at fairs and other public gatherings, was another item of his programme. All would have failed, of course, if he had not built good machines, but he did build good machines, and was not daunted by the Government’s refusal in 1848 to renew his original patent. He decided to make profits as a manufacturer rather than accept royalties as an inventor.
McCormick had many competitors, and some of them were in the field with improved devices ahead of him, but he always held his own, either by buying up the patent for a real improvement, or else by requiring his staff to invent something to do the same work. Numerous new devices to improve the harvester were patented, but the most important was an automatic attachment to bind the sheaves with wire. This was patented in 1872, and McCormick soon made it his own. The harvester seemed complete. One man drove the team, and the machine cut the grain, bound it in sheaves, and deposited them upon the ground.
Presently, however, complaints were heard of the wire tie. When the wheat was threshed, bits of wire got into the straw, and were swallowed by the cattle; or else the bits of metal got among the wheat itself and gave out sparks in grinding, setting some mills on fire. Two inventors, almost simultaneously, produced the remedy. Marquis L. Gorham, working for McCormick, and John F. Appleby, whose invention was purchased by William Deering, one of McCormick’s chief competitors, invented binders which used twine. By 1880 the self-binding harvester was complete. No distinctive improvement has been made since, except to add strength and simplification. The machine now needed the services of only two men, one to drive and the other to shock the bundles, and could reap twenty acres or more a day, tie the grain into bundles of uniform size, and dump them in piles of five ready to be shocked.
Grain must be separated from the straw and chaff. The Biblical threshing floor, on which oxen or horses trampled out the grain, was still common in Washington’s time, though it had been largely succeeded by the flail. In Great Britain several threshing machines were devised in the eighteenth century, but none was particularly successful. They were stationary, and it was necessary to bring the sheaves to them. The seventh patent issued by the United States, to Samuel Mulliken of Philadelphia, was for a threshing machine. The portable horse-power treadmill, invented in 1830 by Hiram A. and John A. Pitts of Winthrop, Maine, was presently coupled with a thresher, or "separator," and this outfit, with its men and horses, moving from farm to farm, soon became an autumn feature of every neighborhood. The treadmill was later on succeeded—by the traction engine, and the apparatus now in common use is an engine which draws the greatly improved threshing machine from farm to farm, and when the destination is reached, furnishes the power to drive the thresher. Many of these engines are adapted to the use of straw as fuel.
Another development was the combination harvester and thresher used on the larger farms of the West. This machine does not cut the wheat close to the ground, but the cutter-bar, over twenty-five feet in length, takes off the heads. The wheat is separated from the chaff and automatically weighed into sacks, which are dumped as fast as two expert sewers can work. The motive power is a traction engine or else twenty to thirty horses, and seventy-five acres a day can be reaped and threshed. Often another tractor pulling a dozen wagons follows and the sacks are picked up and hauled to the granary or elevator.
Haying was once the hardest work on the farm, and in no crop has machinery been more efficient. The basic idea in the reaper, the cutter-bar, is the whole of the mower, and the machine developed with the reaper. Previously Jeremiah Bailey, of Chester County, Pennsylvania, had patented in 1822 a machine drawn by horses carrying a revolving wheel with six scythes, which was widely used. The inventions of Manning, Hussey, and McCormick made the mower practicable. Hazard Knowles, an employee of the Patent Office, invented the hinged cutter-bar, which could be lifted over an obstruction, but never patented the invention. William F. Ketchum of Buffalo, New York, in 1844, patented the first machine intended to cut hay only, and dozens of others followed. The modern mowing machine was practically developed in the patent of Lewis Miller of Canton, Ohio, in 1858. Several times as many mowers as harvesters are sold, and for that matter, reapers without binding attachments are still manufactured.
Hayrakes and tedders seem to have developed almost of themselves. Diligent research has failed to discover any reliable information on the invention of the hayrake, though a horserake was patented as early as 1818. Joab Center of Hudson, New York, patented a machine for turning and spreading hay in 1834. Mechanical hayloaders have greatly reduced the amount of human labor. The hay-press makes storage and transportation easier and cheaper.
There are binders which cut and bind corn. An addition shocks the corn and deposits it upon the ground. The shredder and husker removes the ears, husks them, and shreds shucks, stalks, and fodder. Power shellers separate grain and cobs more than a hundred times as rapidly as a pair of human hands could do. One student of agriculture has estimated that it would require the whole agricultural population of the United States one hundred days to shell the average corn crop by hand, but this is an exaggeration.
The list of labor-saving machinery in agriculture is by no means exhausted. There are clover hullers, bean and pea threshers, ensilage cutters, manure spreaders, and dozens of others. On the dairy farm the cream separator both increases the quantity and improves the quality of the butter and saves time. Power also drives the churns. On many farms cows are milked and sheep are sheared by machines and eggs are hatched without hens.
There are, of course, thousands of farms in the country where machinery cannot be used to advantage and where the work is still done entirely or in part in the old ways.
Historians once were fond of marking off the story of the earth and of men upon the earth into distinct periods fixed by definite dates. One who attempts to look beneath the surface cannot accept this easy method of treatment. Beneath the surface new tendencies develop long before they demand recognition; an institution may be decaying long before its weakness is apparent. The American Revolution began not with the Stamp Act but at least a century earlier, as soon as the settlers realized that there were three thousand miles of sea between England and the rude country in which they found themselves; the Civil War began, if not in early Virginia, with the "Dutch Man of Warre that sold us twenty Negars," at least with Eli Whitney and his cotton gin.
Nevertheless, certain dates or short periods seem to be flowering times. Apparently all at once a flood of invention, a change of methods, a difference in organization, or a new psychology manifests itself. And the decade of the Civil War does serve as a landmark to mark the passing of one period in American life and the beginning of another; especially in agriculture; and as agriculture is the basic industry of the country it follows that with its mutations the whole superstructure is also changed.
The United States which fought the Civil War was vastly different from the United States which fronted the world at the close of the Revolution. The scant four million people of 1790 had grown to thirty-one and a half million. This growth had come chiefly by natural increase, but also by immigration, conquest, and annexation. Settlement had reached the Pacific Ocean, though there were great stretches of almost uninhabited territory between the settlements on the Pacific and those just beyond the Mississippi.
The cotton gin had turned the whole South toward the cultivation of cotton, though some States were better fitted for mixed farming, and their devotion to cotton meant loss in the end as subsequent events have proved. The South was not manufacturing any considerable proportion of the cotton it grew, but the textile industry was flourishing in New England. A whole series of machines similar to those used in Great Britain, but not identical, had been invented in America. American mills paid higher wages than British and in quantity production were far ahead of .the British mills, in proportion to hands employed, which meant being ahead of the rest of the world.
Wages in America, measured by the world standard, were high, though as expressed in money, they seem low now. They were conditioned by the supply of free land, or land that was practically free. The wages paid were necessarily high enough to attract laborers from the soil which they might easily own if they chose. There was no fixed laboring class. The boy or girl in a textile mill often worked only a few years to save money, buy a farm, or to enter some business or profession.
The steamboat now, wherever there was navigable water, and the railroad, for a large part of the way, offered transportation to the boundless West. Steamboats traversed all the larger rivers and the lakes. The railroad was growing rapidly. Its lines had extended to more than thirty thousand miles. Construction went on during the war, and the transcontinental railway was in sight. The locomotive had approached standardization, and the American railway car was in form similar to that of the present day, though not so large, so comfortable, or so strong. The Pullman car, from which has developed the chair car, the dining car, and the whole list of special cars, was in process of development, and the automatic air brake of George Westinghouse was soon to follow.
Thus far had the nation progressed in invention and industry along the lines of peaceful development. But with the Civil War came a sudden and tremendous advance. No result of the Civil War, political or social, has more profoundly affected American life than the application to the farm, as a war necessity, of machinery on a great scale. So long as labor was plentiful and cheap, only a comparatively few farmers could be interested in expensive machinery, but when the war called the young men away the worried farmers gladly turned to the new machines and found that they were able not only to feed the Union, but also to export immense quantities of wheat to Europe, even during the war. Suddenly the West leaped into great prosperity. And long centuries of economic and social development were spanned within a few decades.